

The DATA-CHASER and Citizen Explorer
Benchmark Problem Sets

Barbara Engelhardt

1
, Steve Chien

1
, Anthony Barrett

1
,

Jason Willis
2
, Colette Wilklow

2

1Jet Propulsion Laboratory, California Institute of Technology

{firstname.lastname}@jpl.nasa.gov

2Previously at Space Grant Consortium, University of Colorado, currently at (1)

Abstract. This paper introduces two benchmark problem sets based on actual space
mission operations. Each benchmark problem set includes problem generators,
declarative specification of the problem(s), and one or more simulations. The first
mission is the DATA-CHASER shuttle payload that flew onboard space shuttle
Discovery flight STS-85 in 1997, and demonstrated the ability of automated mission
planning to both reduce commanding effort and improve science return. The second
mission is the Citizen Explorer Mission (CX-1), which is a small, earth orbiting
satellite currently being prepared for launch. We include three problem classes of
increasing complexity (and realism) for each mission scenario: planning and scheduling
with states and resources (PSSR), PSSR with functional dependencies, and PSSR with
functional dependencies and plan quality. The actual implementations are available
for download from web sites at the University of Colorado, which designed and
operated these spacecraft and missions.

1 Introduction
Historically, the research and applications communities in the area of automated
planning and scheduling have not had significant amounts of interaction. As a
consequence, there has not been significant transfer of information between the
communities in either direction. Specifically, the cross-fertilization of communities is
limited to a small number of research systems deployed in an ongoing operational
context, and similarly only a few real-world planning and scheduling problems have
breached the research community.

There are many reasons for this situation. It takes an incredible investment of time
and energy for a researcher to learn the intricacies of an application domain. The
research community and research institutions generally have not rewarded this
investment of effort. Likewise, the community solving actual planning and scheduling
problems did not have adequate incentive to work with the research community. With
many difficult problems to solve in building functional systems, many of the central
research areas are of lower priority. And in the commercial arena, there is significant
negative incentive to distribute lessons painfully learned, which represent a n important
competitive advantage after all.

Fortunately, this situation appears to be changing. Within the research community,
there is an increasing understanding of the importance of being relevant to the real
world. With the appearance of startup companies and venture capital, the financial
incentive to develop mature algorithms has grown considerably. Furthermore, with the

maturation of the field (and technology), the incentive for applied organizations to
engage the research community has become more urgent.

This paper represents an effort to leverage the research community in developing
techniques for integrated planning and scheduling problems that occur commonly for
space mission operations. The remainder of this paper is organized as follows. First,
we describe the basic elements that we provide for each testbed domain: a domain
description, a declarative model, problem generators, and a simulation. For each such
domain, we provide three versions of increasing complexity. A basic version of each
domain includes planning and scheduling with resources. A more complex version
adds functional dependencies. And the most complex version includes both functional
dependencies and plan quality. Next, we describe each of the domains described in
this paper: DATA -CHASER shuttle payload operations and Citizen Explorer (CX-1)
satellite mission operations. For each domain we describe the background for the
mission and mission goals. We then provide more details about the planning and
scheduling problems. Next we describe the provided problem generators and
simulators. Finally, we compare the problem domains presented with previously
published domains in both the planning and scheduling and the operations research
communities.

2 The Elements of a Testbed Domain
The first element of each domain is a textual description. This description gives the
context of the model, problem generators, and simulation. It explains the mission being
modeled and the overall problem context. It also references previous work in
automated planning and scheduling solutions to the problem.

The second element of each domain is a model. This model is provided in the
ASPEN Modeling Language (AML) [Sherwood et al. 1998]. AML is a mature
representation language that has been used to represent planetary rover operations
constraints [Sherwood et al. 2000] as well as space mission operations constraints for
actual deployments [Smith et al. 2001, Wilkins&desJardins 2001]. While ideally these
domain models could be provided in a more generic language, this format was chosen
for two reasons. First, using AML facilitates timely release of the domain models by
minimizing release effort. Given that it is desirable to release as many domain models in
a timely fashion, it is hoped that others in the community will translate these models
into a generic format. Second, certain aspects of the domain model would be difficult
to represent in current generic domain description languages. The hope is that release
of these models will spur extension of domain description languages. A description of
the modeling language used for the original models is available for download from
http://aspen.jpl.nasa.gov.

The third element of each problem domain is a problem generator. This is an
executable (in these cases, Perl scripts) that can be used to generate a large number of
initial states and goals for a planner to solve. In most cases the problem generator is
parameterized to enable generating problems of varying size and diffic ulty.

The final element of each problem domain is a simulator. Once a planner has
specified a plan, an execution simulation can be used to stochastically evaluate the
effectiveness and the robustness of the plan for simulated missions operations.
Effectiveness determines how well the planner satisfied the spacecraft goals, and can
be measured by assessing the operational results, such as the science return, resource
consumption, or state changes. Robustness, on the other hand, measures the ability of
the planner to enable a successful mission in spite of significant run-time variations
and anomalies, such as an action finishing early, consuming excessive resources, or

simply not executing correctly. Robustness can be measured by determining the
number of inappropriate actions that are sent to the simulator, which in turn violate the
constraints of the domain or put the spacecraft in an unsafe state.

The simulator itself has three parts: The database which stores the current state at
time t, a set of specifications and constraints, and an executive, which receives action
commands from the planner, attempts to execute them using the specification and
constraint set, and updates the current state. The simulator is scalable so that there
can be large or small simulations. The modeling of the simulator depends on how the
planning language is defined, which determines whether activities are time-stamped,
connected by constraints, or have conditional activities, or whether the planner can
update its plan based on simulation feedback during the simulation.

For our domains, batch planners and continuous planners both use the same
simulator. The planner is required to submit activities some number of seconds in
advance of their scheduled execution, which is described as the commit window. The
commit window must be greater than or equal to one second, and the planner must
register the commit window length with the simulator when execution starts. The
commit window size can change during execution, but the planner cannot modify
activities once they have entered the commit window. The planner can receive updates
from the simulator regarding activity parameter changes (such as start time or
duration), state and resource updates, and current time. The simulator can warp so that
the plans can run much faster than real time, relative to the commit window described
by the particular planner. Batch planners can control the simulator either by setting the
commit window to the duration of the plan (in which case the simulator can quickly
warp through the entire simulation), or by passing parameterized activities at the
appropriate times, but not replanning during the simulation. An important point to
note here is that the domain information does not pose any restrictions on the use of
planning technology to solve the problems. The planners could use constraint-based
methods, committed search methods, or any other methods. Indeed, there is no
restriction that a planner must be used, a smart executive or even arbitrary C code
could be used to command the simulator. This opens the competition to truly test if
planning technology is useful.

The stochastic model, or run-time variations, are stored as part of the
specifications, which specify distributions instead of single values for certain variable
features. Three different aspects of the mission can be impacted at run time: activity
failure, resource consumption, and time and duration of state changes. Each domain
has a stochastic and a non-stochastic simulator included in the release.

3 The DATA CHASER Mission
The DATA-CHASER was a Hitchhiker payload that flew onboard the Space Shuttle
Discovery flight STS-85 in August 1997. (Figure 1) It had 3 co-aligned instruments
that take data in the far and extreme ultraviolet wavelengths: far and extreme ultra-violet
spectrometer (FARUS), soft x-ray and extreme ultraviolet experiment (SXEE), and a
Lyman-Alpha solar imaging telescope (LASIT). In the actual DATA-CHASER mission,
mission operations were automated using the DCAPS (DATA -CHASER Automated
Planner and Scheduler) planning system [Chien et al. 1999]. The DATA -CHASER

Fig. 1. DATA-CHASER payload integrated into the STS-85 Shuttle Bay, STS-85 launching,
and Payload Operator Jason Willis using DCAPS to command DATA-CHASER.

domain as modeled for the actual mission uses 67 resources and 58 activity types.
Examples of resources include onboard power, a 4 MB memory buffer, and a 2 GB
digital tape drive. Most of the systems have at least one state variable, which
represents whether or not they are activated. Shuttle orientation is also modeled as a
state variable. There are many concurrency resource constraints, for instance a
downlink or uplink can only occur during contact with a TDRSS satellite. The activities
include taking a picture with LASIT, changers for each state variable (such as
opening/closing instrument doors), and descriptions of exogenous events like the
shuttle passing to/from the Earth’s shadow. Unfortunately, software integration
difficulties before launch disabled part of the hardware during the mission. Our
problems are based on the mission as originally designed.

DATA -CHASER problems involve trying to take observations within specified time
windows given a number of exogenous events that change at different times. For
instance, one consequence of flying on the shuttle system is that shuttle resources are
shared and, hence, limited, with availability subject to change every 12 hours (the
frequency at which NASA changes shuttle flight plans). These resources include
access to uplink and downlink channels, and time that the payload is allowed to
operate. Moreover, scientis ts would like to perform dynamic rescheduling during the
mission. For instance, a solar flare can occur at random and drive a scientist’s desire to
rapidly alter the DATA-CHASER’s activity schedule to reflect new requirements and
goals, such as altered instrument priorities or longer integration times.

DATA -CHASER requires data and power management while gathering science. An
automated scheduler searches for an optimal “data taking” schedule, while adhering to
the constraints and resource restrictions. In its basic formulation, DATA -CHASER is a
straightforward resource and state constrained scheduling problem that serves as a
good introduction to the types of operations constraints common in spacecraft
operations. A more complicated formulation requires representation of a number of
functional dependencies including thermal and power constraints. In the full-blown
formulation, DATA-CHASER represents a complex scheduling problem involving
deadlines, observation windows, science preferences, linked observations, and
engineering optimization criteria such as minimizing tape starts and stops as well as
instrument door operations. There is no substantive planning (e.g. subgoaling) in the
DATA-CHASER domain.

3.1 The DATA-CHASER Models and Problem Generators
The simplest DATA-CHASER model has over 46 activity types that are defined in
terms of their effects on 19 resources and 9 states, which collectively represent the
DATA-CHASER’s external environment and subsystems. Such resources and states
include the memory buffer, available power, communications availability periods,
subsystem modes, and shuttle orientation. Most activities are possible commands to
payload subsystems like performing an observation, moving data to a DAT recorder, or
downlinking data. A smaller set of activities is for representing uncontrollable
exogenous events like a shuttle orientation shift or entering a communications
availability period. The five types of exogenous events to schedule around include:
• Shuttle orientation: The shuttle can point its cargo bay in one of four directions:

Earth, Sun, Moon, and Deep Space. Given that the DATA -CHASER is a low
priority Hitchhiker payload, it has no control over the orientation.

• Shuttle contamination: Occasionally the shuttle needs to fire its maneuvering
rockets for orbit maintenance. In addition to accelerating the shuttle, this activity

contaminates local space for a short time. The DATA-CHASER has to close its
main canister door during this time to keep its optics clean.

• Low data rate communications windows : During most of the mission the shuttle can
provide a 1200 byte/sec downlink through the TDRSS satellite network, but a one to
ten minute window exists in each orbit when no TDRSS satellite is in view.

• Medium data rate communications windows : Occasionally the mission will have a
25000 byte/sec downlink to a ground station, but availability depends on ground
station visibility and the needs of other more important missions.

• Eclipse events: Once every orbit the shuttle travels through the Earth’s shadow,
and no solar observations are possible.

DCAPS-RES is our simplest DATA-CHASER planning model and illustrates
planning with resources. The objective is to perform observations when the shuttle is
not in the Earth’s shadow, the cargo bay is facing the sun, and the shuttle has not
recently contaminated the space around it. FARUS, SXEE and LASIT respectively take
72, 181, and 52 seconds and generate 5120 bytes, 48 bytes, and 2 megabytes per
observation, and whole system generates a kilobyte of engineering telemetry per hour.
Given that the memory buffer only has 4 MB, it is the most constrained resource. Since
data can be rapidly transferred to the 2GB DAT recorder, there are naïve approaches to
scheduling the observations by simply transferring the data as soon as it collected, but
data on the DAT cannot be downlinked for rapid analysis during the mission. Rapid
analysis is desired to let scientists alter the priorities of different observations to
improve data quality. Thus some goals have explicit downlink requirements, making
the scheduling problem slightly more difficult.

While our first model had fairly simple actions that took constant amounts of time
and had static effects, our second model (called DCAPS-PARM) is slightly more
complex in that it uses parameter dependency functions capture the context dependent
thermal management problem. Since DATA-CHASER was mounted on a poorly
conducting trellis in the vacuum of space, the only way to dissipate heat was through
radiation. This means that the payload warmed when the sun beat down on it, and
cooled during eclipses and when it pointed at deep space. We model this in terms of
the temperature of the payload changing at rates determined by the shuttle’s
orientation, whether or not the canister door is open, and the power requirements of
current activities. Given our model of heat, a schedule has a conflict due to calibration
loss whenever the temperature falls outside of an 18° to 22° Celsius range.

Given DCAPS-PARM, we define DCAPS-OPT as an even harder third model to
optimize science collection during a 12 hour period where different observations have
context dependent payoffs depending on varying solar activity – an exogenous event.

The problem generators create random start states with subsequent 12-hour
exogenous event scenarios and either a requested collection of observations or an
observation payoff metric for the DCAPS-OPT model. We describe the exogenous
events either in terms of cycles that start at a random point or markov models where
time to take a transition is uniformly distributed between an upper and lower bound.
For instance, the shuttle will be at some random point in its orbit and the day/night
transition is a cycle starting at that point. Shuttle orientation provides an example of a
markov model where scheduling to satisfy other payload needs results in changing the
shuttle’s orientation in random ways. In order to inject some realism into our markov-
model-based exogenous events, we built our markov models from the 12-hour shuttle
event sequences used during actual DATA -CHASER operations.

3.2 The DATA-CHASER Simulator
We evaluate solution plans for a problem by simulating them. The simulator takes
exogenous events and grounded activities and determines what happens to the
payload. For instance, having the contamination event with the CHASER door open
may result in the instruments failing due to dirty optics. To evaluate solutions in each
of the three models, the simulator has a flag to control the temperature component. For
the simplest model, the simulator holds the temperature constant, and for the other
models the simulator lets the temperature vary.

To make the problem more realistic, the simulator has a second flag to control a
stochastic element. While actions in planning domains have explicit durations and
effects, actions in reality have results that vary stochastically. For instance, a model
might pessimistically state that it takes two minutes to transfer a LASIT image to the
DAT recorder, but the actual time might vary from 100 to 120 seconds. In addition to
time four other effects can vary around nominal operations:
• Datatakes : Datatakes will fail randomly 9% of the time. Actual power usage will

differ from predicted power usage based on a normal distribution with a small
variance. Failure rates and variances increase as the instruments’ temperature
approach the 18° and 22° Celsius bounds due to calibration problems.

• DAT Transfers : Transferring data to the DAT fails 2% of the time with data loss.
• Communications: Communications windows can drift slightly due to small variances

between the Shuttle’s orbit and the TDRSS satellite network.
• Thermal: The payload’s rate of temperature change can vary by up to 5%.

Once given a problem description, the simulator takes grounded activities some set
time in advance of executing them and giving sensory feedback in the form of failure
notifications and the actual changes to the payload, which can stochastically different
from the modeled expectations. This approach facilitates being able to test both batch
planning approaches as well as incremental approaches. Upon completing the plan the
simulator returns the plan’s resulting score based on multiple criteria:
• The number of violated operational conflicts
• The number of successfully downlinked observations by observation type
• The number of observations stored on the DAT by observation type
• The number of times that the CHASER door opens and closes
• The number of activity failures by activity
• The total amount of power used while performing the observations
• An observation time based utility function for DCAPS-OPT problems.

4 The Citizen Explorer 1 (CX-1) Mission
The CX-1 spacecraft is a student designed and built spacecraft (Figure 2), developed
by the Colorado Space Grant Consortium [Willis et.al. 1999]. The CX-1 satellite has a
gravity gradient boom to keep it pointed to the Earth and uses two instruments to make
atmospheric observations: a photometer to measure visible light intensity near the
365nm wavelength and a spectrophotometer to measure light intensities at different
wavelengths between 280 and 350nm. These instruments will be used to perform
atmospheric and climatological science coordinated with ground-based ozone and
aerosol measurement. CX-1 was originally scheduled to launch on No vember 17, 2000.
However, due to software and hardware difficulties with the communications
subsystem, this launch has been delayed. Future launch possibilities are currently
being negotiated. When launched, CX-1 will be in a sun-synchronous orbit around the

Earth at an altitude of 705 kilometers. The main ground tracking station will be in
Colorado, and will downlink stored satellite data, provide real time health and status
data, and uplink commands and control directives. CX-1 will also broadcast science
and engineering data at UHF frequencies to schools at locations in the US.

CX-1 mission planning scenarios focus on the problem of acquiring the appropriate
atmospheric measurements, downlinking the data to the correct schools during the
upcoming pass, uplinking real-time activity requests from the University of Colorado,
and monitoring spacecraft health and orbit patterns. Multiple constraints make this
problem difficult. First, small data buffer sizes make CX-1 planning a highly resource
constrained scheduling problem. Second, the time windows when CX-1 can downlink
to a ground station are extremely limited by the limited onboard power and the small
size of K-12 school ground stations (due to cost constraints),. Third, a large amount of
data will be requested from the spacecraft so that it is important to optimize use of
available downlink. Fourth, measurements made by CX-1 are categorized and driven by
sun levels , hence the operations will vary based on near real-time feedback. While CX-
1 operations does involve a small amount of planning (subgoaling), it is primarily a
scheduling problem.

4.1 The CX-1 Models and Problem Generators
The model for CX-1 has approximately thirty-two activities, including data-takes, data
downlinks, data uplinks, and engineering activities. These activities are defined in
terms of their effects on thirteen resources and eight states, which collectively
represent the CX-1’s subsystems and external environment. These resources and
states include the flash memory buffer, communications link, available battery power,
solar array power, a sun sensor, ground station in-view periods, climate modes, and
transmitter modes. Activities are either commands to satellite subsystems or
exogenous events affecting the satellite’s states or resources, such as entering/exiting
the view of a ground station or entering/exiting direct sunlight.

The model also has mission and operations constraints, which can impact activities
(temporal constraints), resources, or states. Temporal constraints include requirements
that a series of critical housekeeping operations must be performed at the transitions
between light and dark. Resource constraints include requirements that the flash
memory buffer cannot exceed its capacities and that the battery power cannot go below
half of its maximum capacity. State constraints include requirements that uplinks and
downlinks only occur when the Colorado station in in -view and that the transmitter is
in transmit mode. Also, school downlinks (which do not move any memory off of the
flash memory buffer) can only occur when the schools are in-view and the transmitter
is in broadcast mode, engineering activities must take place when the sun is not
directly visible, and data takes must occur while the sun is in-view.

CX-1 problems involve obtaining and downlinking the maximum amount of
atmospheric data while staying inside power and memory resource guidelines. The in-
view duration for the Colorado ground station varies depending on the orbit of the
satellite and outages in the ground station. Removing data from the flash memory
buffer before it fills requires downlinking as much as possible during each visibility
window, and this requires dynamic rescheduling as viewing periods change. Also,

Fig. 2. The CX-1 Spacecraft, undergoing integration and test, and an artist’s
depiction of the CX-1 Spacecraft deployed and in flight

changes in power consumption by certain activities affects the power profile and can
drain excessive power from the satellite. Here dynamic rescheduling facilitates
discarding activities to stay within power guidelines.

There are three different CX-1 models with increasing complexity. In CX1-RES,
activities have constant durations and have constant resource and state needs. This
model represents a straightforward space mission operation domain for planning and
scheduling with constrained states and resources. The CX1-PARM model adds a
number of parameter dependencies. For some activities, power usage is a function on
activity duration and lighting state, and takes as much power as possible from the solar
power source before relying on battery power. Battery usage is a function of current
levels of battery charge and the duration of the activity. Downlinking bandwidth is a
function of the modes of the satellite. Finally, the CX1-OPT model further increases
the complexity by including optimality criteria. These criteria are based on the total
amount of data downlinked to the ground stations (preferring more data), the largest
amount of data contained in the memory buffer at any one time (with a preference for
less), the amount of data acquired while in non-tropical climates (preferring more), the
number of mode switches in the transmitter, and the smallest charge on the available
power (preferring a higher minimum charge).

With these models the CX-1 problem generators create six different files containing
activity instantiations for a user specified number of orbits. Some of these activities
are changers for exogenous events and they cannot be deleted, removed, or modified
in the schedule. Others are requests for downlinking, engineering events, and
datatakes, and can be modified, added to, or removed in the final schedule.
• Initialization Activities: In the start state, there is a random amount of power in the

battery and a random amount of data currently stored in the flash memory.
• Engineering Data Requests: Engineering scans are requested approximately every

280 seconds while the spacecraft is in both in -view of the sun and in darkness.
• Datatake Requests: These requests occur approximately every 170 seconds when

the spacecraft is in-view of the sun.
• Sun In-View Periods: These periods are generated randomly based on an estimate

of a CX-1 proposed orbit and a somewhat random start position. The spacecraft
always begins the simulator in darkness. The climate (tropical or non-tropical)
transitions are generated relative to the sun in-view periods.

• Power Activities: Solar power activities add a random amount of power to the
available power resource, and occur approximately every 300 seconds while the
spacecraft is in-view of the sun.

• Downlink Station In-View Periods: Downlink windows to both the Colorado ground
station and participating schools are generated randomly based on viewing
windows for an estimated orbit and sun in-view periods. Each window’s duration is
based on both satellite position and the strength of the receiving station.

4.2 CX-1 Simulation
We can describe the mission operations of the CX-1 model, as described above, in
terms of the stochastic element of the planning simulation in order to illustrate how the
simulation can differ from predicted (or nominal) operations. For instance, many
activities have actual power usages that are normally distributed with a small variance
around their predicted power usages.
• Engineering Scans: Engineering scans fail randomly 7% of the time.
• Datatakes : Datatakes will fail randomly 9% of the time.

• Solar Power Functions: The actual amount of solar power is normally distributed
around the model’s predicted solar power with a small variance.

• Light/Dark Cycle: The sunlight/darkness cycle may be shifted based on a cyclic
model of satellite drift. The shift also impacts entering and exiting tropical zones.

• Downlinking: Satellite drift impacts all downlink opportunity windows. The start
time may be moved (i.e., delayed lock up) and the duration may be shortened (i.e.,
signal cut off) based on a cyclic model of satellite drift.

• Bandwidth: The bandwidth to downlink both spacecraft data and science data is a
uniformly distributed number, owing to possible downlink problems.

These stochastic parameters can remain ungrounded until run-time where they
impact the planner’s effectiveness. Many runs can be performed on the simulator to
estimate the expected performance of the planner. For testing purposes, we also
include a “happy simulator” which runs nominal operations with zero variance.

The CX-1 simulator receives parameterized activities from the planner and simulates
operations for the entire duration of the plan. Throughout the the plan’s execution, the
simulator calculates the score based on the following criteria:
• Number of violated operational conflicts (e.g., dual usage of atomic resources,

overflowing the memory buffer, or downlinks to nonexistent ground stations)
• Total amount of data downlinked to the Colorado ground station
• Flash memory usage (preferring a lower mean usage and smaller variance)
• Available power (preferring a higher mean and smaller variance)
• Total amount of data downlinked to the school ground stations
• Total amount of data acquired while in a non-tropical zone
• Total number of transmitter mode switches

5 Accessing the Problem Set Information
The problem set information is downloadable from the University of Colorado Space
Grant Web Site (www-sgc.colorado.edu). While the release sets are preliminary and are
still undergoing slight revisions (and testing), they are very close to the final sets.
This site will also be the focal point for future updates and releases. While the
domains are being made available to the public, specific terms are listed on the web site
– including acknowledgement of the source in the event of any usage of the material,
prohibitions on commercial use, etc.

6 Discusion: Future Work, Related Work, Conclusions
We hope that these domains will be the first in a series of space mission operations
domains released for use by the automated planning and scheduling community. As
we have less mature collaboration efforts with three other University Nanosatellite
projects, we hope that eventually we will be able to release similar problem sets relating
to these. An important aspect of this work in volves determining standards for
releasing domains – i.e. a formalization of the domain, problem generator, and simulator
specifications. Developing a sufficiently expressive domain representation standard
would facilitate use of the problem sets by other research groups.

While there has been a historical disconnect between the research and applications
oriented planning communities, a number of planning-oriented domains and testbeds
have been made available. These testbeds have originated in the research community
by experimenters as they either improve an existing planner’s performance or define

algorithms that plan with ever more expressive action representations. For instance,
the classical PRODIGY and UCPOP planners had multiple test domains included in their
releases. The sensory GRAPHplan package [Graphplan] has accompanying domains
as well. Our testbeds differ from this work due to our underlying focus on real world
problems instead of planner test cases.

On the planner comparison side, many planner optimization papers report planner
performance on a number of benchmark problems, and the most realistic of these is a
logistics problem to move packages around an artificial map. Additionally, the AIPS 98
[McDermott 2000] and 2000 [Bacchus] planning competitions had problems defined in
a standard modeling language called PDDL, and test domains with problem generators
and plan simulators were used. Our domains are different than these previously
released testbeds in that they are derived from actual space mission operations
problems and address integrated planning and scheduling with metric time, resources,
functional dependencies, and optimization (although a number of AIPS 2000 domains
had some of these elements).

The part -machining domain [Gil 1991] and the elevator control domain [Koehler &
Schuster 2000] were motivated by real problems. The part machining was an attempt to
extract domain knowledge about how to turn a mass of metal into a machined part and
encode it into a PRODIGY domain. Similarly, the elevator control domain involved
taking a set of services and constraints and encoding them in PDDL to be solved by
planners such as those participating in the AIPS competitions. One of the results from
these efforts involved determining where the established modeling language cannot
represent a desired feature of the real world problem. For instance, the elevator control
problem has a capacity constraint that PDDL could not represent. Our work differs
from this research in two places. We do not avoid time and other metric constraints,
and we altered our simulators to facilitate experimenting with interleaved planning and
execution.

A number of additional pure scheduling benchmarks exist [Fox & Ringer] as well as
makespan benchmarks. These are designed to be more manufacturing and enhanced
job-shop scheduling problems. In contrast, our work emphasizes the integrated
planning and scheduling inherent in space mission operations.

Other research on interleaved planning and execution has resulted in shared
testbeds like tileworld, truckworld, and the phoenix testbeds [Hanks et al. 1993]. These
worlds were generated as benchmark cases for agent design within a multi-agent
context. While tileworld and truckworld were relatively simplistic testbeds fo r testing
agent systems, the phoenix testbed focused on a forest firefighting domain. Each of
these testbeds offered defining problems with varying complexity, but only the phoenix
testbed had an underlying operations scenario like our testbeds. The Robocup rescue
project [Kitano et al 2001] also focuses on providing testbeds with an underlying
operations scenario. It targets distribution of a complex multi-agent simulation
environment. This environment has the potential to provide an extremely rich planning
and scheduling testbed.

This paper introduced two benchmark problem sets based on actual space mission
operations. Each benchmark problem set includes problem generators, declarative
specification of the problem(s), and one or more simulations. The first mission is the
DATA-CHASER, which demonstrated the ability of automated mission planning to
both reduce commanding effort and improve science return [Chien et al. 1999]. The
second mission is the Citizen Explorer Mission (CX-1), which is currently being
rescheduled for launch. We include three problem classes of increasing complexity
(and realism): planning and scheduling with states and resources (PSSR), PSSR with
functional dependencies, and PSSR with functional dependencies and plan quality.

The domain descriptions, problem generators, and simulators are available for
download from a web site at the University of Colorado, which designed and built
these spacecraft and missions (and operated DATA-CHASER). It is our hope that
release of this information will help to focus the planning and scheduling research
community on key issues in planning and scheduling including: domain model
expressiveness, representing functional dependencies, and plan optimization.

7 References
1. Sherwood, R., et al. “Using ASPEN to Automate EO -1 Activity Planning,” Proceedings

1998 IEEE Aerospace Conference, Aspen, Colorado, March, 1998.
2. Sherwood, R., Estlin, T., Chien, S., Rabideau, F., Engelhardt, B., Mishkin, A., and Cooper,

B., “An Automated Rover Command Generation Prototype for the Mars 2001 Marie Curie
Rover,” SpaceOps 2000, Toulouse, France, June 2000.

3. Smith, B.D., Engelhardt, B.E., Mutz, D., “Automated Mission Planning for the Modified
Antarctic Mapping Mission,” Proceedings 2001 IEEE Aerospace Conference, Big Sky,
Colorado, March, 2001.

4. Wilkins, D. and desJardins, M., “A Call for Knowledge -based Planning,” AI Magazine,
11(1): 99-115, 2001.

5. Chien, S., Rabideau, G., Willis, J., and Mann, T., "Automating Planning and Scheduling of
Shuttle Payload Operations," Artificial Intelligence Journal 114 (1999) 239-255.

6. Willis, J., Rabideau, G., Wilklow, C., "The Citizen Explorer Scheduling System,"
Proceedings of the IEEE Aerospace Conference, Aspen, CO, March 1999.

7. Sensory GraphPlan home page, http://www.cs.washington.edu/ai/sgp .html
8. McDermott, D. The 1998 AI Planning Systems Comp. AI Mag 21(2), 2000.
9. Bacchus, F. The AIPS-00 Planning Competition. http://www.cs.toronto.edu/aips2000
10. Gil, Y., “ A Specification of Manufacturing Processes for Planning,” CMU-CS-91-179.
11. Koehler, J. and Schuster, K., “Elevator Control as a Planning Problem,” Proc 5th Intl Conf

on Art Intelligence Planning Systems, Breckenridge, CO. April, 2000.
12. B. Fox and M. Ringer, Resource Constrained Scheduling Problem Home Page,

http://www.neosoft.com/~benchmrx/
13. S. Hanks, M. E. Pollack, and P.Cohen, “Benchmarks, Testbeds, Controlled

Experimentation, and the Design of Agent Architectures, AI Magazine, 14(4):17-42, 1993.
(also see http://www.cs.pitt.edu/~pollack/distrib/tileworld.html)

14. H. Kitano and S. Tadakoro, “RoboCup Rescue: A Grand Challenge for Multiagent and
Intelligent Systems,” AI Magazine, 11(1): 39-52, 2001. (also see http://www.r.cs.kobe-
u.ac.jp/robocup -rescue/)

